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Flow patterns in models of small airway units of the lung 

By M. R. DAVIDSON AND J. M. FITZ-GERALD 
Department of Mathematics, University of Queensland, Australia 

(Received 2 August 1971) 

Quasi-steady creeping flow in models of small airway units of the lung is investi- 
gated. A respiratory unit of the lung is modelled by a sphere, an oblate and a 
prolate ellipsoid of revolution, and a circular cylinder of finite length. The solution 
of the Stokes equations for each of these geometries is indicated for general axi- 
symmetric boundary conditions. For particular cases consistent with the models, 
streamlines are plotted and some velocity profiles are shown. It is suggested that  
bulk 00w in the h a 1  generations of the lung is significant for gas transport even 
though diffusion is the predominant mechanism there. 

1. Introduction 
The airways of the human lung begin with a single tube, the trachea, which 

divides into a right and a left principal bronchus, each bronchus supplying a half 
lung. Subsequent branches to about the 10th generation, where the diameter 
has decreased to about 1 mm, are termed bronchi. Branching continues with a 
series of airways called bronchioles. At about the 17th generation, where a typical 
airway diameter is 0.5 mm, the bronchioles begin to acquire alveoli - outpouchings 
where gas exchange occurs - and are hence called respiratory bronchioles. The 
degree of alveolation increases with generation until about the 2Oth, where the 
airways (alveolar ducts) are completely surrounded by alveoli. The whole system 
of branching terminates a t  about the 23rd generation with enclosures called 
alveolar sacs. These sacs also bear alveoli and, like the alveolar ducts, have no 
real walls but are open on all sides to alveoli. 

Gas exchange occurs across the alveolar walls, which enclose a dense network 
of capillaries; 0, diffuses into the blood and CO, is released into the alveoli. Gas 
transport in the lungs between the upper respiratory regions and the alveolar 
walls depends on both convection and diffusion. In  the larger airways (trachea 
and bronchi) convection dominates; mixing occurs in the secondary flows at 
branchings and assists in the distribution of oxygen during inspiration. As the 
total airway cross-sectional area increases, and velocities correspondingly 
decrease, diffusion assumes an increasingly important role. However, the 
adequate distribution of gases to all sections of the final alveolated generations 
may still depend significantly on the convection process, as discussed later. 

The object of this paper is to study the convective flow in various models of 
a respiratory unit consisting of an alveolar duct together with its surrounding 
alveoli. Streamlines are plotted and some velocity profiles are shown. 
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2. Models of a respiratory unit 
The usual classification of the final branchings of the lung as ducts and alveoli 

is not suitable for a discussion of the flows therein. The equations of motion are 
elliptic; the flow is therefore determined by the geometry of the whole space avail- 
able. Rather than considering a (non-existent) well-defined central duct carrying 
a flow which is perturbed by alveolar openings, it  is preferable to  think in terms of 
a single ‘respiratory unit ’ containing partitions which define the individual 
alveoli. Such partitions are henceforth referred to as interalveolar partitions since 
any one of them is a wall common to adjacent alveoli. Altshuler (1968) also 
observed the desirability of treating the alveolar duct and its alveoli as a single 
entity and correspondingly defined an ‘alveolar spatial unit ’. 

Studying the flow through a respiratory unit is too difficult unless considerable 
simplifications are made. It is convenient to neglect the interalveolar partitions 
(the effects of doing this are discussed later) and then model the unit with a 
number of axially symmetric figures (see figure 1) .  The cases considered include 
models with stationary and with expanding walls. 

2.1. Flow equations 
In the small airways the Mach number is very small, and changes in air density 
caused by molecular diffusion of 0, and CO, are negligible since N, is the major 
constituent; the flow is effectively incompressible. Therefore, incorporating body 
forces in the pressure term, the equations of motion are 

au VP -+u.vu+ - = YV2U, 
at P 

v . u  = 0, 

where u is the fluid velocity, p is the modified pressure, p is the density and Y is 
the kinematic viscosity. If we non-dimensionalize the variables in the equations 
as follows: 

t* = t / T ,  U* = U / U ,  

where D, U and T are some characteristic length, velocity and time respectively, 
the equations become 

4- - u* .v*u* 4- v* D2au* U D  -- 
YT at* v 

The Reynolds number, R = UD/u, is small (R  = 0.056, based on an average 
velocity U = 0.1 cm/s and a typical unit diameter D = 900pm), so that the non- 
linear inertia term u .Vu in the flow equations may be neglected. Another 
dimensionless parameter, P = D2/uT, must be considered for the unsteady flows 
in a respiratory unit which result from the act of breathing. T is some typical 
period of the unsteady motion, in this case the time for a single breath. P is small 
(P = 0.013, based on D = 900pm and T = 4s), therefore the term au/at may be 
neglected in the  flow equations and the flow is quasi-steady. 
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The equations of motion are now the Stokes flow equations (with an implicit 
time variable), which, in the axisymmetric case, may be reduced to the single 
equation 

where $ is the Stokes stream function and the form of the differential operator 
0 2  varies with the co-ordinate system used. Each problem is rendered dimension- 
less using length L (see figure 1)  and U,, the instantaneous maximum entrance 
velocity with respect to the model. 

D4$ = 0, (1) 

I 
I 2L I 2B 

FIQURE 1. Models of a respiratory unit with a circular section removed from one or both 
ends. Broken lines are tho regions upon which tho end velocity conditions are imposed. 
(a) Sphero, ( b )  oblate ellipsoid of revolution, (c) prolate ellipsoid of revolution, ( d )  circular 
cylinder, (e) sphere. 

11-2 



164 ill. R. Davidson and J .  M .  FibGerald 

2.2.  Co-ordinate systems 

Let u and x be the familiar cylindrical co-ordinates where x is the axis of s p -  
metry of any figure. Choose the origin at the centre of the figure for any geometry. 
For a pa,rticular geometry a co-ordinate system is chosen so that one of the 
co-ordinates remains constant on the boundary; e.g. cylindrical co-ordinates are 
used for the circular cylinder because u is constant on the cylinder. For the sphere, 
spherical co-ordinates ( r ,  0) are used where 0 is the angle between radius r and the 
positive x axis and we define p = cos0. For the oblate ellipsoid of revolution, 
oblate spheroidal co-ordinates (q ,0) ,  given by 

u = c cosh q sin 0 and x = c sinh r ]  cos 0, 

where c is a positive constant, 0 < r] < 00 and 0 < 6’ < 7r, are used. If h = sinhq 
then (T = c [ (  1 + A2) (1 -p2)]4 and x = CAP. I n  a similar way the co-ordinates for 
the prolate ellipsoid of revolution are u = c [ ( y 2 -  1) (1 -p2)]4 and x = c y p ,  where 
y = coshq. 

2.3 .  Axisyrnmetric $ow in a sphere 

On r = 1 general boundary conditions for flow axisymmetric about the x axis ar0 

u, = F ( p ) ,  uo = -sin 0G(p), ug = 0, 

where u,, uo and u6 are the velocity components in spherical co-ordinates. The 
total flux across the surface of the sphere is zero, so 

F(tL)dp = 0. s’1 
We now introduce the 

ordinates, by 

u, = 

Stokes stream function @(r,  0) given, in these co- 

with @(r,  0) zero on the axis of symmetry, x. The boundary conditions on r = 1 
become 

and 

Note that (2) gives 9 = 0 on p = + 1 m desired. 
I n  spherical co-ordinates 

a 2  1-p2 a 2  
D 2 = - - + - -  

ar2 r2 ap2 

and (1) has a solution of the general form 

wherc, if P,(p) is a Legendre polynomial of degree n,  
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1 Requiring $, u, and ug to be finite at the origin and @ to be zero on p = 
reduces (4) to 

m 

@(r, 0 )  = C (Anrn+l+C n rn+3 )%(P)*  
n=l 

Applying the boundary conditions (2) and ( 3 )  yields 

and 

If 

then 

where 

m 

1 

-1 
I,, = j t"P,(t) at 

and, from Whittaker & Watson (1952), 

2m+ln! (Q(n+m))! 
for n - m even and non-negative, 

In, m I= (+(n-m))! (n+m+ l)!  

[ = 0 otherwise. 

So Ek, = - Ik+l, n/(k + 1 )  for n 4 0 and is non-zero only for ( k  + 1 - n) even and 
non-negative. 

Thus multiplying (5) and (6) by pk (with k an integer) and integrating gives 
k+l 

n=l 
c Ek,n = Fk 

k+ 1 

n= 1 
and C [(n+1)An+(n+3)c~]Ek,n = G k ,  

where 

By successively setting k = 0,2 ,4 ,  . .., we can obtain as many coefficients for 
odd n as we wish. Similarly by setting k = 1,3 ,5 ,  . . . we can obtain the coefficients 
for even n. We should note, however, that in cases where the flow is symmetric 
all coefficients for even n will be zero. 

2.4. Axisymmetric $ow in an oblate ellipsoid of revolution 
I f  7 = 7, on the boundary, then the length of the semi-major axis is c cosh T,, 
which equals unity, and h = (1 - cZ)*/c = A,, say, on the boundary. On h = A,, 
general boundary conditions for flow, axisymmetric about the x axis, are 

u1) = F ( p ) ,  (7) 

u, = -sin BG(p), (8) 
U$ = 0, 

where u,,, u, and u$ are velocity components in oblate spheroidal co-ordinates. 
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The total flux across the surface of the figure is zero, so 
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(l-c2+c2p2)1F(p)dp = 0 .  S', 
In these co-ordinates the Stokes stream function is given by 

1 a@ 

-1 a@ 

u =  
11 (c2coshq sin8(coshz7-sin20)*) 3 

and u g  = 
(cz cosh 7 sin 8 (cosh2 7 - sin2 8)*) 

with $(q, 0) = 0 on the axis of symmetry x. The boundary conditions on h = A, 
become 

' 

1 ~ .  = -J' (l-c2+czt2)*F(t)dt =f@), say (9) 

(10) 

- 1  

a.nd &,h/aA = c( 1 -p2) ( 1  - c2 + czp2)1 G ( p )  = g(p), say. 

In these co-ordinates 

and ( 1 )  has a solution of the general form 

and 

However, since $ must be zero on p = & 1 ,  A ,  and B, are both zero. Applying the 
boundary conditions (9) and (10) yields 

WOOL, 4 = 2(To(p) T A Z )  + To@) T,(p)) + W o ( p ) T 2 ( 4  + TO(4 T2@)). 

so  

and is non-zero only for ( k  + 3 - n )  even and non-negative. Multiplying ( 1 2 )  and 
( 1 3 )  by pk, integrating and using the properties of Wk, It and Ek, gives 

k+3 k+l 

n= 1 n=l 
2 A n w , n ( - i h O ) + 2  BnTn(-ihO)Ek,n = Fk 
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and 
k+3 k+l 

n = l  n= 1 
C A,W;,,(-ih,)+ C BnTA(-iho)Ek,n = G,. 

Let k be even and consider the system 

k+3 k+l 

n=3 n = l  
2 A,W;, , ( - iA,)+C BnTh(-iho)Ek,n = G,. (15) 

By successively setting k = 0,2,4, . . . , solutions of  (14) and (15), A*,for n = 3,5,7, . . . 
and B: for n = 1,3 ,5 ,  ... may be obtained up to any odd value of n. If Fk and Gk 
are replaced in (14) and (15) by Wk, 1( - ih,) and Wg, 1( - ih,) respectively and 
solutions 2, and B, are obtained, then for odd n the actual coefficients in the 
eigenfunction expansion for $ will have the form 

A ,  = A*,-A,B, (n = 3,5,7,  ...), 

B, = Bz-A,Bn (n = 1 , 3 , 5  ,... ). (16) 
Similarly, by making k odd, A ,  and B,  will have the following form for even n: 

A ,  = A z - A , x n  (n  = 4 ,6 ,8 ,  ...), 

B, = B2-A2Bn (n = 2 ,4 ,6 ,  ...). (17) 

We now truncate the series for $ after AT terms, substitute the expressions 
(16) and (17) into (1 1) and match the truncated series with f (p) at the boundary 
h = A, by means of a least-squares criterion. This procedure will produce esti- 
mates for A ,  and A,. Again, if the flow is symmetric, all coefficients for even n 
are zero. 

2.5. Axisymmetric $ow in a prolate ellipsoid of revolution 

The semi-minor axis of the ellipsoid of revolution has length unity, so if y = yo 
on the boundary, then yo = (1 +c2)*/c .  The boundary conditions on y = yo are 
(7) and (8) together with u+, = 0, and the solution has the form 

$ = C (AnW,(P,Y)  +BnTn@)Tn(y)), 
n= 1 

The coefficients may be obtained from the boundary conditions in the manner 
of the previous section. 

2.6. AxisymmetricJlow in a circular cylinder of jinite length 

This problem was investigated by Fitz-Gerald (1969) in order to  examine the 
plasma flow in narrow capillaries. We use his solution, which involves expressing 
the stream function $in the form $ = $p + $,, where $p is the Poiseuille solution 
satisfying the no-slip conditions on u = 1 and $a is a solution selected to ensure 
that 4 satisfies the conditions at  the ends. The selection is made by the choice of 
coefficients in the eigen function expansion for $,. 



168 M .  R. Davidson and J .  M .  Fitz-Gerald 

3. Applications of the general solutions 

is of the order of 250-300,um, we therefore select 
Weibel(l963) mentions that in adults the total depth of the average alveolus 

250 < L-B Q 300pm. (18) 

100 Q Q 300pm, (19) 

1 < 1/2B < 3, (20) 

0.25 < b < 0-54. (21) 

The lengths of the respiratory units representcd by figure 1 (a) ,  (b), (c) and (d )  
are given by Z/L = 2( 1 - b2)6, Z/L = 2[( 1 - c2) (1 - b2))li, Z/L = 2[( 1 + c2) ( 1  - b2)]* 
and 111, = 2m respectively. Substitution into (20) gives a condition which must 
be satisfied simultaneously with (2  1 ) by the parameters involved. 

For the circular cylinder of finite length the antisymmetric cigenfunctions 
decay a t  least as rapidly as sinh (a,z)li(u) away from the ends (a ,  z 4.5+il-5) 
and cannot be associated with any net flow. Hence it is reasonable to assume 
symmetric boundary conditions (and hence symmetric flows) for those modcls 
with stationary walls. It should be noted however, that if the model is expanding, 
the flow cannot be symmetric. 

Parabolic velocity conditions at the entrance and exit of the sphere (figure 1 ( a ) )  
with stationary walls are 

The diameter of alveolar ducts and sacs varies between 200 and 600,um, giving 

and the length-to-diameter ratio of alveolar ducts lies betwecn 1 and 3, hence 

where I is the length of the duct. From (18) and (19) we obtain 

u,=1-a2/b2 and u,=O on r = l  for ( l - b z ) ~ < l p l < l .  

By making use of the no-slip condition on the rcmaindcr of the sphere it is easy 
to show that I =  (1-1/b2)+p2/b2 for (1-b2) t  < IpI 6 1, 

G(pu) 1 = 0 elsewhere, 

and F ( p )  = pG(,u). To compare these with the parabolic velocity conditions we 
also consider a ‘ fourth-power ’ profile a t  the ends given by u, = 0.75( 1 - a4/b4) 
and u, = 0. We have chosen the maximum velocity to  be 0-75 to ensure that the 
flux entering and leaving the spherc is the same for both ‘fourth-power’ and 
parabolic profiles; this provides a basis for comparison. 

For Stokes flow, any entrance flow in a semi-infinite circular cylinder of radius 
unity decays to Poiscuille flow like e-aiXk(cr), where 2 increases along the length 
of the pipe. Thus it requires very little distance along anything resembling 
a smooth-walled pipe between respiratory units for the flow to fall significantly 
to Poiseuille flow. Even if there is insufficient distance for this to  occur, and the 
flow has decayed only as far as a ‘fourth-power’ profile say, figure 2(a)  shows 
that a large part of the flow in the unit is relatively unaffected by this difference 
in  end profiles. It is therefore felt that the assumption of parabolic profiles at the 
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FIQURE 2. Streamlines in a quadrant of spherical model (a) with stationary walls. (a) b = 0.6, 
broken lines are streamlines corresponding to the ' fourth-power ' end velocity condition 
with the same flux. ( b )  b = 0.3, bracketed numbers are the values of the stream function 
using the boundary aa a reference line. 
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ends of model respiratory units will provide qualitative results characteristic of 
all end conditions which could occur, so parabolic end conditions are assumed for 
all geometries herein. In any case, the use of such idealized models precludes any 
more complicated assumptions. 

Parabolic velocity conditions a t  the entrance and exit of the oblate ellipsoid of 
revolution (figure 1 ( b ) )  with stationary walls, together with the no-slip condition 
on the remainder of the figure, gives 

1M. R. Davidson and J .  M .  Fitz-Gerald 

= 0 elsewhere, 

and F ( p )  = ( 1  - c2)1pG(p). Similarly for the prolate ellipsoid of revolution 
(figure 1 (c)) with stationary walls, 

I = 0 elsewhere, 

and F ( p )  = (1 +c2)-$pG(p). For the circular cylinder of finite length with 
stationary walls, '11, = u, = 0 on u = 1, while on x = k m ,  p, = 0 and 

ux = 0 elsewhere. 

[ =  l - ( ~ / b ) ~  for u G b, 

For the sphere with expanding walls, parabolic entry and exit profiles with 
respect to the sphere are assumed, where U, and U, are the corresponding 
instantaneous maximum velocities. Let V be the instantancous velocity of 
expansion, v = V/U,  and U = UJU,. Superimposing the Poiseuille velocities on 
the dimensionless radial velocity v at the ends we obtain 

= ( l - l / b 2 ) + p Z / b 2  for - 1  < p  < (1 -b2)* ,  

G ( p )  = U ( ( l - l / b 2 ) + p z / b 2 )  for (1 -b2)4  < p  < 1, I = 0 elsewhere, 

and F ( p )  = pG(p) + v. Conservation of mass gives us *b2( 1 - U )  = 2v. Now, as 
the sphere expands, b will remain constant; so if we assume that U is a constant 
(that is, both U, and U, vary in the same way with time and differ only by a con- 
stant factor U )  then v will be constant. For the sphere (figure 1 (c)) which models 
a terminal respiratory unit, F ( p )  and G ( p )  arc those given above with U = 0. 

4. Effect of interalveolar partitions 
Since diffusion dominates convection in the alveoli a detailed study of the gas 

flow there is unnecessary. A convenient simplification in modelling the respiratory 
unit is therefore to ignore the interalveolar partitions within the unit. However, 
some idea of the behaviour of the flow in the individual alveoli may be obtained. 

Takematsu ( 1965) considered Stokes flow in a two-dimensional rectangular 
cavity of finite depth associated with an imposed velocity along the mouth of the 
cavity and found that eddies were set up. For a shallow cavity (approximately 
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square in cross-section) only a single eddy was found but in a deeper cavity more 
(smaller) eddies were found near tho bottom. Takematsu (1966) later reaffirmed 
this in a study of slow viscous flow pasb a cavity of infinite depth. Hence it is 
reasonable that the alveolar walls should reduce the amount of flow and produce 
some recirculatory flow in the alveoli. 

5. Distances of convection 
Since nearly all the air in the lung is in the final alveolated regions we assume 

where V, is the air volume of a respiratory unit, V, is the air volume of the lung 
and n is the number of respiratory units in the lung. 

v, = V L h  (22) 

For the expanding spherical models 

V ( t )  = CU,(t), (23) 
where V is the velocity of expansion of the unit, U, is the mainstream entrance 
velocity with respect to the sphere and C is a constant. Let U be the dimensional 
fluid velocity and U* the dimensionless fluid velocity of the quasi-steady flow 
a t  any time. Then U M U,(t) U*. On (r = 0, U is in the x direction. Let U have 
magnitude U(x ,  t )  and let U* have magnitude U*(x*), where x* = x /L ( t )  and 
L ( t )  is the radius of the spherical model at time t. 

Then the position of a fluid particle on u = 0 is given by 

X J t )  = g: ,* ( t )  L:,*(t), 
and dZP/dt  = U(XP,t) = Uo(t) U * ( Z ; r ) ,  

axplat = g ( t )  &/at + L(t) ax;/at. 

Eliminating dx,/dt from these two equations and using (23) together with 
V ( t )  = dL/d t  we obtain 

S O  

where a particle a t  dimensionless position x1 on the x axis when the radius of the 
sphere is L, moves to position x ,  when the radius is L,. Using (22) we obtain 

where VL2 and V,, are the air volumes of the lung corresponding to radii L, and L,. 
Thus the distance moved by a fluid particle on the x axis between any two lung 
volumes may be obtained. 

6. Physical relevance of the models 
If we rtssume that all units expand a t  the same constant rate, then, using 

average entrance velocities based on WeibeYs data, we find that U (as defined for 
expanding spherical models) decreases from about 0.85 a t  the 20th generation 
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to zero at the final generation. Note that if the model is not expanding, U is unity 
and the flow is symmetric. Figure 3 shows streamlines in an expanding sphere 
for U = 0.75. We see that except near the wall of the unit, asymmetry of flow is 
not great. 

1 .o 

0.6 

U 

\ 
0' I I I 1 1 1 1 1 1 1 

- 1.0 --O.R -0.6 -0.4 - 0.2 0 0.2 0.4 0.6 0.8 1.0 

Axis of symmetry 

FIGURE 3. Streamlines in spherical model (a) (with expanding walls) of 
a rcspiratory unit for b = 0-5 and U = 0-75. 
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FIGURE 4. Streamlines in spherical model (e) (with expanding walls) of 
a terminal respiratory unit for b = 0.5. 

We have already sacrificed accuracy of description offlow near the wall of a, unit 
by our neglect of interalveolar partitions. It is therefore not unreasonable to base 
a qualitative discussion of the gross features of the flows on the more convenienb 
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stationary wall models. Of course, in modelling a terminal respiratory unit, mass 
conservation requires the use of an expanding model. 

We have chosen model shapes which in some sense typify a respiratory unit 
and which are also convenient to study. Although units with fore-aft symmetry 
are unlikely to occur, asymmetric shapes may be discussed qualitatively in terms 
of them. Consider a figure of revolution having, say, a spherical shape for 2 < 0 
and the shape of an ellipsoid of revolution for z 2 0. We have already shown that 

0.6 - 

(7 

\ 
\ 

0.2 - \ 
\ 
I 
I 

0 -  I I I I 
0.2 0.4 0.6 0.8 1 .o 

2 

FIarsRE 5. Lines of constant velocity in a quadrant of spherical model (a) with stationary 
walls for b = 0.5. Broken sections of these lines are regions for which velocity data were not 
obtained. 

the flow away from the ends of a figure is not greatly affected by the end condi- 
tions and it is known that low Reynolds number flows adjust very easily to 
variations in shape. We could therefore construct an approximate flow in this 
asymmetric figure merely by connecting the symmetric flows which exist in the 
sphere and the ellipsoid of revolution separately. 

7. Discussion 
For figures 2(a)  and (b ) ,  b = 0.5 and 0.3 respectively. The length of a unit 

represented by a sphere is 2( 1 - b2) i ,  so the variation in duct length bekween 
figures 2 (a )  and ( b )  is small (the lengths are 1.7 and 1.9 respectively). Figures 
9 (a) and (b ) ,  of course, exhibit no change of duct length, both pairs of flows 
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indicating that alveoli are better supplied by convection for larger values of 
b. Larger values of b mean shallower alveoli and hence greater velocities in an 
alveolus. This is borne out by the velocity profiles in figures 10 (a) and ( b ) .  How- 
ever, the need for maximum respiratory surface area will induce a compromise. 

The units in figures 2 (a) ,  8 and 9 (c) have much greater lengths than those in 
figures 6 and 9 (a).  We see that for the large duct length, transport of air to the 
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FIG~RE 6. Streamlinos in a quadrant of the oblate ellipsoid of revolution with stationary 
walls for b = 0.5 and c = 0.8. 

FIGURE 7. Lines of constant velocity in a quadrant of the oblate ellipsoid of rovolution with 
stationary walls for 6 = 0-5 and c = 0.8. Broken sections of these lines are regions for 
which velocity data were not obtained. 

alveoli by convection is much better; fluid is swept further up towards the 
alveoli and the velocities there are greater. This second fact is shown clearly by 
a comparison of the velocity profiles in figures 10 (a)  and (c) .  If we now consider 
only the circular cylinder model and increase its length even more, there will come 
a stage where the flow in the central region is Poiseuille and any increase in duct 
length will merely lengthen the region in which Poiseuille flow dominates. How- 
ever, the advantages of large duct length shown by our models will be reduced in 
practice by the increase in the number of alveolar walls which the fluid encounters. 
These will slow the fluid in the alveoli and reduce the amount of flow through 
them. 
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Consider a lung with the small tidal volume of 500 ml where the initial volume 
V, is 2300 ml and the final lung volume V, is 2800 ml. In  such a lung we consider 
that fluid particle which is on the x axis at  the entrance of the model terminal 
respiratory unit (xl = - (1 - P)*) when the lung volume is V .  If x2 is the non- 
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X 

FIGURE 8. Streamlines in a quadrant of the prolate ellipsoid of revolution 
with stationary walls for b = 0.5 and c = 0-8. 
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F I G ~  9. Streamlines in a quadrant of the cylindrical model with stationary walls. 
(a) b = 0.5, m = 0.5. (b)  b = 0.3, m = 0.5, bracketed numbers are the values of the stream 
function using the boundary as a reference line, (c) b = 0-5, m = 1.0. 

dimensional position of the particle when lung volume is V, then (x2 - xl) is the 
dimensionless distance moved by this particle in a sphere of radius unity for an 
increase (7, - V )  of air volume in the lung. The values of (x2 - xl) corresponding 
to various values of V between V, and V, are given in table 1. 
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2 2  - 21 v (4 V' - V (ml) 

0.83 2300 500 
0-73 2400 400 
0.62 2500 300 
0.49 2600 200 
0 2800 0 

TABLE I 

0 0.2 0.4 0.6 

Velocity Velocity Velocity 

FIGURE 10. Velocity profile a t  x = 0 in the cylindrical model with stationary walls. 
(a)  b = 0.5, m = 0.5; ( b )  b = 0.3, ~ f l  = 0.5; (c) b = 0.5, m = 1.0. 

Note that the figures are (i) for a small tidal volume and (ii) for a terminal respira- 
tory unit, in which we expect convection to play a lesser role than in units of 
earlier generation. In spite of (i) and (ii) the figures suggest that convection could 
be important in the transfer of air through the central core of a unit. 

The inspired gas passes through the conducting airways, mixing with dead 
space gas which has a lower 0, concentration. So the longitudinal concentration 
gradient in the final generations may not become large, since a considerable 0, 
concentration remains in the alveoli even after expiration. As the incoming breath 
enters the first-order respiratory units and the 0, concentration begins to 
increase, 0, diffuses more rapidly to the alveolar walls in the immediate vicinity. 
If subsequent units have to rely predominantly on longitudinal diffusion for their 
0, supply, they may be starved of 0, in comparison with the first-order units, 
which have a continual supply by bulk flow. Thus, even though the velocities are 
small, the concentration of 0, in the new gas is comparatively high and the net 
convective transfer generated may be significant when compared with diffusion 
down the longitudinal concentration gradient. That is, even though the PBclet 
number is small in the h a 1  generations of the lung, it may have less relevance for 
mass transport in the longitudinal direction than in the radial direction. 
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Although diffusion is much more important than convection in the radial 
direction, the flow patterns and velocity profiles in our models suggest that bulk 
flow could also be of significance in transporting air towards the alveoli, where, 
of course, diffusion dominates completely. 

M. R. Davidson wishes to thank the Australian Commonwealth Government 
for the financial support of a Commonwealth Postgraduate Award. 
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